In an industrial environment, several components of industrial automation are connected, and these components need to communicate with one another. Historically, this communication was done using Fieldbus, and the components were connected using serial-based communications. Data transfer was done through protocols like Modbus, PROFIBUS, CAN bus, and others.
The concept of the “Industrial Ethernet” has arisen over the past decade to meet these needs of a new industrial world. In fact, a study in 2019 indicated that Industrial Ethernet had eclipsed Fieldbus for the first time in newly-installed solutions and a follow-up report in 2020 indicated the trend is continuing.
Ethernet has, of course, formed the backbone of IT networks for many decades. Because of its speed and flexibility, traditional Ethernet standards for data communication are being applied to other areas and sectors – and this includes industrial IT. But the Ethernet concept had to be adapted to fit the industrial context.
One way the concept was adapted was through the development of new protocols for data communication – most notably, EtherNet/IP, PROFINET, EtherCAT, POWERLINK, or Modbus TCP. The other adaptation – and the one that we will focus on specifically in this article – is through specialized hardware created for an industrial environment.
Before we discuss how the hardware is specialized for industrial purposes, let's first consider the types of industrial devices:
And, of course, because we're talking about Ethernet, the cables and physical connections are also an important part of the hardware conversation.
The industrial environment is physically very different to an office environment. Extreme temperatures, excessive humidity, powerful vibrations, high dust levels, the presence of chemical substances, and electromagnetic noise are all common conditions found on a plant or factory floor. Standard IT hardware would not withstand many of these conditions.
In the case of industrial devices, there are models available that can operate between -40°C and 85°C, have increased vibration and shock resistance, or have high ingress protection ratings.
When it comes to cables, it's obvious that the old friend of the traditional system administrator, the 8P8C connector, would be insufficient in almost all of the harsh conditions often found in factories and plants. Cables for industrial usage are therefore more robust, with higher quality jackets and metal, and include connectors that have extra shielding or that are water resistant.
Being resistant to extreme conditions is not the only concern for industrial devices. There are other factors that need to be taken into account, and so industrial devices have several other common characteristics:
Adopting the Industrial Ethernet brings about its own challenges for engineers and technicians in industrial IT. Legacy devices require serial-to-Ethernet converters, systems must be migrated to new protocols, and additional network complexity are just a few of these challenges. And of course, constantly ensuring these devices are up and performing as they should be is crucial.
Data required for monitoring is also often available through OPC UA, a widely-adopted standard in industrial IT communications. Additional mechanisms that can be leveraged for monitoring might include APIs, MQTT, and more. Ideally, monitoring of industrial devices should form part of a unified industrial IT monitoring concept.
In the next few weeks, we will be discussing concrete use cases to demonstrate how to monitor devices such as industrial switches, so be sure to subscribe to our blog newsletter so you don't miss that.
Have you adopted elements of the Industrial Ethernet in your environment? Let us know in the comments below.